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Abstract	

Text	analysis,	web	scraping,	and	other	computational	techniques	enable	policy	network	
researchers	to	efficiently	obtain	objective	measures	of	network	connections.	However,	the	
extent	to	which	these	observational	methods	differ	from	traditional	survey	instrument-
based	measures	remains	an	open	question.	Focusing	on	a	large	regional	policy	network	of	
221	organizations,	this	study	compares	a	measure	of	collaboration	generated	via	survey	
instrument	to	two	different	measures	based	upon	internet	hyperlinks	and	Twitter	
interactions	between	network	actors.	We	address	two	questions:	(1)	To	what	extent	do	
objective	network	measures	based	upon	observed	online	interactions	and	subjective	
measures	based	upon	self-reported	relationships	reveal	the	same	inter-organizational	
partnerships	and	structural	network	dynamics?	and	(2)	How	useful	are	online	network	
measures	for	supplementing	survey-based	network	measures?	We	find	a	significant	,but	
substantively	small,	correlation	between	survey-based	measures	and	online	interactions.	
Thus,	online	network	measures	may	complement	survey-based	measures,	but	likely	reflect	
different	aspects	of	the	overall	policy	network.	We	conclude	by	discussing	the	potential	for	
multiplex	measures	of	policy	networks	that	draw	upon	multiple	measures	to	more	fully	
understand	policy	network	landscapes.	These	results	bridge	and	help	to	contextualize	prior	
work	on	policy	network	measures	and	virtual	policy	networks	within	the	broader	context	
of	complex	governance	systems.	
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Introduction	

	
The	concept	of	polycentric	governance,	in	which	there	are	many	relevant	centers	of	

decision-making	that	are	formally	independent	of	one-another	(Ostrom	et	al.	1961),	

undergirds	modern	policy	theories	concerning	the	dynamics	of	complex	policy	systems	

(Lubell	2013;	Feiock	2013;	Andersson	and	Ostrom	2008).	General	recognition	that	each	

stage	of	the	policy	process	thus	plays	out	within	decentralized	networks	of	public	and	

private	actors	is	not	new	(e.g.,	O’Toole	1997;	Heclo	1978;	Provan	and	Milward	1995).	

However,	ongoing	advances	in	field	methods	for	measuring	networks	(Yi	and	Scholz	2016;	

Leifeld	2013;	Ulibarri	and	Scott	2016;	Henry	et	al.	2012)	and	analytical	methods	for	testing	

network	theories	(Lubell	et	al.	2012;	Berardo	2014;	Smaldino	and	Lubell	2011;	Sandström	

and	Carlsson	2008)	continue	to	facilitate	new	ways	of	understanding	network	dynamics	

and	assessing	the	effectiveness	of	network	governance	strategies.		

	

Survey	instruments	have	long	been	the	tool	of	choice	to	measure	networks	of	policy	actors.	

Much	empirical	work	testing	theories	of	policy	network	and	inter-organizational	

collaboration	relies	upon	data	derived	by	asking	network	actors	to	report	data	such	as	

frequent	network	contacts,	prominent	collaborative	partners,	participation	in	inter-

organizational	forums,	and	other	types	of	network	ties	(e.g.,	Schneider	et	al.	2003;	Berardo	

and	Scholz	2010;	Calanni	et	al.	2015;	Scott	2016;	Ingold	and	Leifeld	2016;	Leifeld	and	

Schneider	2012).	Recent	advances	in	the	use	of	surveys	has	allowed	researchers	to	solicit	

more	complete	and	reliable	responses,	and	online	and	email	surveys	lower	the	cost	of	

disseminating	surveys	(Henry	et	al.	2012).	However,	it	still	requires	a	significant	

investment	in	time	and	money	to	develop	a	survey	and	collect	responses	which	increases	
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with	network	size,	and	online	surveys	tend	to	suffer	from	lower	response	rates,	partly	

offsetting	the	cost	savings	associated	with	online	survey	data	collection	(Shih	and	Fan	

2008).	As	network	size	becomes	large,	so	too	does	the	number	of	possible	network	ties,	

increasing	the	burden	on	the	survey	respondent’s	recall.	Perhaps	most	problematically,	

resource	constraints	and	the	unwillingness	of	institutional	actors	to	engage	in	repeated	

surveys	also	reduces	the	capacity	of	researchers	to	study	how	networks	change	over	time.	

These	factors	limit	the	ability	to	scale	of	survey	methods	to	larger,	more	complex	emerging	

institutional	environments,	and	have	prompted	calls	for	(Lubell	et	al.	2012),	and	

methodological	explorations	of	(Yi	and	Scholz	2016),	alternative	measures	of	policy	

networks.	

	

This	article	investigates	the	potential	for	using	revealed	online	behavior	to	unobtrusively	

observe	a	large,	directed	policy	network.	While	organizational	actors	in	the	governance	

process	have	increased	their	online	presence	in	recent	years,	the	study	of	online	behavior	

among	actors	in	an	environmental	governance	context	and	the	extent	to	which	online	

network	ties	reflects	meaningful	policy-oriented	relationships	remains	nascent	in	the	

institutional	and	governance	literatures.	This	study	builds	upon	the	foundational	work	of	Yi	

and	Scholz	(2016)	by	directly	comparing	online	network	measures	to	self-reported	

collaborative	ties	measured	via	survey	instrument.	Specifically,	the	purpose	of	this	study	is	

to	investigate	the	correspondence	between	inter-organizational	network	ties	coded	based	

upon	two	objective,	online	measures,	hyperlinks	and	Twitter,	and	subjectively	reported	

network	ties	generated	via	survey	instrument.	Using	survey	data	from	221	unique	

organizations	active	in	a	regional	environmental	policy	network	in	conjunction	with	data	
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from	organizational	websites	and	Twitter	accounts,	we	address	two	primary	questions:	(1)	

To	what	extent	do	objective	network	measures	based	upon	observed	online	interactions	

and	subjective	measures	based	upon	self-reported	relationships	reveal	the	same	inter-

organizational	partnerships	and	structural	network	dynamics?	and	(2)	How	useful	are	

online	network	measures	for	supplementing	survey-based	network	measures?	

	

In	what	follows,	we	first	provide	background	on	the	online	interactions	used	to	code	

network	ties,	specifically	hyperlinks	and	Twitter	activity.	We	then	describe	the	

advantageous	circumstances	of	our	case,	in	which	we	are	able	to	pair	survey	data	that	have	

been	used	to	support	several	studies	of	policy	networks	(Citation	Redacted,	Citation	

Redacted)	with	online	network	data	in	order	to	directly	compare	the	different	field	

methods	for	measuring	a	large-scale	network.	Then,	we	detail	how	these	data	are	collected,	

and	specify	the	quadratic	assignment	procedure	(QAP)	and	exponential	random	graph	

model	(ERGM)	techniques	used	to	model	and	compare	each	network	measure.	We	

conclude	with	a	discussion	of	the	implications	of	this	work	for	future	policy	research.		

	

Online	Measures	of	Collaborative	Networks	

	
Because	a	considerable	amount	of	governance	processes	and	coordination	activities	now	

take	place	online,	the	study	of	policy	networks	has	expanded	to	include	network	measures	

based	purely	within	an	online	context	(Rayner	et	al.	2013;	Craft	et	al.	2013;	Shumate	and	

Lipp	2008).	Advances	in	online	data	collection	and	the	expansion	of	potential	avenues	for	

online	communication	and	representation	have	created	new	opportunities	to	observe	
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networks	through	direct	collection	of	primary	data	rather	than	relying	on	self-reported	

network	ties	collected	via	surveys.	Not	only	are	these	online	network	ties	directly	

observable,	but	they	can	be	observed	unobtrusively	and	repeatedly	over	time,	offering	a	

clear	advantage	over	survey	measures	in	this	respect.	Online	network	measures	do	not	

necessarily	provide	a	representational	sample	of	all	network	organizations,	since	

organizations	with	more	resources	or	that	more	strongly	emphasize	public	engagement	are	

expected	to	be	be	more	likely	to	design	and	maintain	a	custom	website	or	be	active	on	

social	media.	Of	course,	survey	instruments	exhibit	non-response	bias	as	well;	the	intent	of	

this	paper	is	to	examine	how,	in	light	of	the	known	potential	shortcomings,	offline	and	

online	network	measurement	strategies	compare	in	terms	of	how	each	portray	the	

underlying	collaborative	network.		

	

Online	interactions	enable	social	structure	between	network	actors	to	be	inferred	on	the	

basis	of	observed	behavior	(Park	2003).	Whereas	surveys	generate	subjective	assessments	

of	network	connections,	observed	connections	between	network	actors	on	social	media	

and	webpages	are	an	objective	representation	of	inter-organizational	connectivity.	Thus,	

online	behaviors	represent	a	publicly-observable	affiliation	between	actors	in	the	network	

(Shumate	and	Lipp	2008).	For	this	study,	we	choose	two	online	network	measures:	

webpage	hyperlinks	and	Twitter	mentions,	both	of	which	are	described	in	detail	below.	

These	particular	measures	are	chosen	because	they	reflect	different	aspects	of	

interorganizational	relationships.	A	webpage	is	the	most	prominent	external	digital	

presence	an	organization	maintains;	along	with	providing	internal	information	about	an	

organization,	webpages	also	allow	organizations	to	affiliate	themselves	with	other	entities	
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or	sources	of	information	by	linking	to	these	other	websites.	For	our	second	online	

network	measure,	we	desired	to	use	a	social	media	platform;	Twitter	was	chosen	on	

account	of	its	vast	user	base	and	the	extent	to	which	public,	private,	and	nonprofit	

organizations	use	it	to	promote	their	activities.	

	

Hyperlinks	are	the	primary	means	by	which	users	navigate	through	the	Web,	and	the	

presence	of	hyperlinks	in	conjunction	with	the	decision	of	the	Web	user	concerning	which	

links	to	follow	shapes	user	experience	of	Web	content.	Each	node	in	the	network	

represents	a	webpage	and	each	network	tie	is	a	hyperlink	-	a	text	or	image	the	user	can	

select	in	order	to	transfer	to	another	webpage.	Because	a	hyperlink	is	directional	from	one	

webpage	to	another,	the	network	is	also	directed:	that	is,	a	network	tie	between	node	i	and	

j	does	not	necessarily	imply	a	tie	between	j	and	i.	Each	hyperlink	represents	a	conscious	

communicative	choice	by	the	website	manager,	and	are	not	generated	automatically.	As	a	

result,	hyperlinks	represent	a	purposive	choice	and	can	therefore	be	considered	strategic	

in	some	sense	(Jackson	1997).	Communication	researchers	have	focused	on	hyperlinks	as	

an	extension	of	social	and	professional	affiliations	(Adamic	and	Adar	2001)	as	well	as	

extensions	of	other	communication	methods	(Olesen	2004).	

	

Policy	scholars	have	focused	on	hyperlink	networks	as	representing	or	extending	other	

forms	of	political	communication	or	affiliation.	Of	particular	interest	for	this	study,	

previous	work	has	shown	an	actor’s	links	within	a	policy	network	to	be	correlated	with	

links	in	a	hyperlink	network,	and	hyperlink	networks	to	share	structural	patterns	with	

other	policy-relevant	networks	(Yi	and	Scholz	2016).	Similarly,	substantive	collaboration	
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between	non-governmental	organizations	has	been	found	to	be	a	strong	driver	in	the	

formation	of	hyperlink	ties	(Pilny	and	Shumate	2012).	Hyperlink	network	data	between	

online	policy	actors	within	a	policy	subsystem	was	used	in	a	test	of	the	theoretical	

expectations	of	the	advocacy	coalition	framework	(Elgin	2015).	While	some	support	was	

offered	for	the	methodological	appropriateness	of	using	hyperlink	activity	to	study	policy	

networks,	it	was	also	found	the	meaning	and	significance	of	hyperlinks	varied	according	to	

context.	Previous	studies	have	also	found	that	hyperlink	activity	may	be	aspirational	in	

order	to	legitimate	the	linking	organization	by	implying	an	affiliation	with	a	more	

respected	peer	organization	(Rogers	2008;	Carpenter	and	Jose	2012).		

	

Twitter	is	an	online	social	network	service	that	allows	users	to	publish	and	read	short	

messages,	limited	to	140	characters,	called	‘tweets’	that	are	usually	publicly	visible	to	

anyone	on	the	Twitter	social	networking	website.	Each	node	in	the	Twitter	network	

represents	a	distinct	Twitter	account.	The	key	feature	of	Twitter	that	we	use	to	construct	a	

network	is	the	ability	to	embed	mentions	of	other	Twitter	users	within	the	text	of	tweets.	A	

network	tie	is	defined	as	a	mention	of	one	user	within	a	Tweet	produced	by	another	user.	

Like	hyperlink	networks,	Twitter	networks	are	directed	because	a	mention	is	‘sent’	from	

the	user	producing	the	Tweet	to	the	user	who	is	mentioned.	

	

While	the	use	of	Twitter	data	specifically	for	recording	policy	and	political	networks	has	

been	limited	thus	far	(Jung	et	al.	2014;	Yoon	and	Park	2014),	more	generally	Twitter	is	

increasingly	recognized	as	providing	fruitful	user-generated	information	for	policy	

research	(Shelton	et	al.	2015;	Auer	2011).	Specifically,	research	has	found	that	Twitter	
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provides	a	useful	medium	for	constructing	and	disseminating	policy	narratives	that	shape	

policy	information	(Merry	2015).	Furthermore,	linking	behavior	of	political	actors	in	a	

Twitter	network	is	strongly	influenced	by	substantive	political	differences	(Yoon	and	Park	

2012),	and	popularity	of	politicians	on	Twitter	is	indicative	of	electoral	outcomes	(Digrazia	

et	al.	2013).	Together	these	results	suggest	actors’	political	communication	and	affiliations	

on	Twitter	reflect	their	interactions	in	the	policy	process.	

Case	and	Data	Collection	

The	nodes	selected	as	the	basis	for	this	network	analysis	are	organizations	who	participate	

in	one	or	more	of	57	collaborative	institutions	related	to	ecosystem	restoration	and	

recovery	in	the	Puget	Sound	region	of	Washington	State.	In	2012-2013,	a	survey	request	

was	sent	as	a	direct	email	from	the	coordinator	of	each	group	to	group	members	on	the	

official	group	email	list.	Respondents	were	asked	to	report	on	their	network	activities	using	

the	“hybrid	name	generator”	technique	proposed	by	Henry	et	al.	(2012)	to	prompt	

respondents	to	identify	up	to	five	different	organizations	with	whom	they	jointly	

implement	policies	or	programs	(this	includes	activities	such	as	permitting	assistance,	as	

many	network	organizations	act	to	provide	funding,	information,	or	administrative	support	

rather	than	delivering	public	goods	and	services),	coordinate	plans	and	develop	strategies,	

and	informally	consult.	This	means	that	each	respondent	could	potentially	list	up	to	15	

other	organizations	with	whom	they	engage	in	some	form	of	collaboration.	The	final	survey	

data	consists	of	400	responses	from	affiliates	of	221	unique	organizations,1	with	a	response	

 
1	In	order	to	aggregate	responses	to	the	organizational	level,	we	first	combine	all	ties	associated	with	a	given	
organization.	Then,	we	remove	duplicate	entries	(when	two	respondents	from	the	same	organization	both	
report	collaboration	with	the	same	external	organization).	Finally,	we	then	control	directly	for	the	number	of	
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rate	of	40%.	More	information	regarding	the	survey,	including	response	rate,	questionnaire	

wording,	and	descriptive	statistics,	are	provided	in	Citation	Redacted	(2015)	and	Citation	

Redacted	(2016).		

		

It	is	important	to	note	that	the	analysis	is	restricted	to	just	ties	between	the	221	

organizations	that	responded	to	the	survey.	Obviously,	the	policy	network	likely	extends	

well	beyond	the	221	nodes	that	are	the	focus	of	our	study	(as	do	ties	reported	via	the	

survey	or	recorded	based	upon	online	network	measures).	However,	we	limit	our	analysis	

strictly	to	to	survey	respondents	because	only	surveyed	organizations	are	able	to	have	both	

ingoing	and	outgoing	ties	in	the	survey	network	measure	(which	is	necessary	for	the	basic	

ERGM	framework).2	The	format	of	each	network	measurement	then	is	a	221	by	221	matrix	

that	reflects	the	observed	value	of	a	tie	from	one	respondent	to	another.	Ties	are	coded	as	

directed	ties,	meaning	that	a	tie	originates	with	one	node	and	end	at	another	(and	thus	that	

a	tie	from	actor	A	to	actor	B	can	take	on	a	different	value	than	the	reciprocal	tie	from	actor	

B	to	actor	A).	Directionality	allows	for	a	more	detailed	perspective	and	provides	more	

information	than	network	measurement	methods	that	code	undirected	ties	based	upon	

project	team	co-membership	or	co-mentions	in	media	reports.	

	

 
respondents	from	each	organization	in	the	ERGM	in	order	to	account	for	the	fact	that	organizations	with	a	
higher	number	of	respondents	had	more	opportunities	to	name	collaborators.	
2 Restricting	to	this	network	subset	also	has	the	advantage	of	reducing	the	risk	of	incorporating	‘false	
positive’	nodes.	When	link-tracing	or	other	forms	of	snowball	sampling	of	organizations	is	incorporated	into	
online	network	data	collection	process,	there	is	a	risk	that	nodes	with	no	collaborative	ties	to	organizations	in	
the	original	survey	sample	may	inadvertently	be	included	in	the	online	network	(Carpenter	and	Jose	2012).		
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Hyperlink	Network	Data	

	
Hyperlink	network	data	was	collected	using	the	internet	software	Issuecrawler	

(https://www.issuecrawler.net/).	Issuecrawler	is	a	common	hyperlink	network	data-

gathering	tool	that	has	often	been	used	in	studies	of	hyperlink	networks	(e.g.,	McNutt	and	

Wellstead	2010;	Pilny	and	Shumate	2012;	Yi	and	Scholz	2016).	From	an	initial	set	of	‘seed’	

webpages,	the	web-crawling	software	automatically	gathers	all	hyperlinks	between	web	

domains	represented	by	the	seed	webpages	up	to	up	to	two	levels	removed	from	the	seed	

webpage.	In	other	words,	starting	with	a	single	web	page	associated	with	each	

organization,	the	program	visited	all	the	web	pages	within	that	website	that	a	Web	user	

could	navigate	to	using	two	clicks	or	fewer	within	the	same	website.	The	program	gathers	

hyperlink	data	for	each	web	page	the	crawler	visited,	and	the	hyperlink	connections	that	

comprise	the	network	links	between	organizational	websites	are	reported	automatically	in	

matrix	form.	

	

The	webpages	serving	as	seeds	for	the	webcrawling	program	were	the	home	pages	

associated	with	organizations	in	the	original	survey-based	network.	The	Google	search	

engine	was	utilized	in	order	to	match	the	221	organizations	from	the	original	survey	to	

their	institutional	websites.	It	is	indicative	of	the	increasing	importance	of	maintaining	an	

organizational	web	presence	that	186	(84%)	of	the	221	focal	organizations	maintain	their	

own	website	with	distinct	hosts	or	domains	(e.g.,	Huxley	College	of	the	Environment	at	

Western	Washington	State	University	corresponds	to	the	website	huxley.wwu.edu)	from	
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which	hyperlinks	to	other	webpages	can	be	gathered	and	matched	to	other	organizations	in	

the	network.	An	additional	27	(12%)	of	the	organizations	in	the	sample	have	a	web	

presence	that	is	not	distinctive,	rather	it	is	nested	as	a	directory	or	individual	web	page	

within	another	organization’s	website.	As	these	organizations	do	not	necessarily	control	

the	content	associated	with	these	websites,	they	are	treated	as	missing	nodes	in	the	

hyperlink	network	along	with	the	eight	organizations	that	have	no	discernible	web	

presence.	The	final	hyperlink	data	crawl	was	completed	May	29,	2016.		

		

Twitter	Network	Data	

	
The	nodes	of	a	Twitter	network	correspond	to	Twitter	user	accounts.	Search	engines	as	

well	as	organizational	websites	were	used	to	identify	the	Twitter	accounts	corresponding	

to	each	organization.	121	(55%)	of	the	surveyed	organizations	were	identified	as	having	an	

official	Twitter	account.	The	Twitter	application	programming	interface	(API)	was	queried	

in	order	to	pull	all	publicly	available	tweets	from	the	timeline	for	specific	user	accounts,	

including	other	Twitter	users	mentioned	in	each	user’s	Tweet.	While	the	Twitter	API	limits	

data	access	to	the	last	3200	public	tweets	posted	on	a	user’s	timeline,	most	users	have	not	

reached	this	limit	over	the	lifetime	of	the	account.	The	Twitter	mentions	that	constitute	the	

links	in	the	Twitter	network	were	identified	by	matching	the	Twitter	account	that	

‘received’	the	mention	to	the	list	of	Twitter	accounts	associated	with	the	organizations.	

This	enabled	us	to	define	a	directed	Twitter	network	link	as	existing	from	the	organization	

doing	the	mentioning	to	the	organization	that	was	mentioned.		
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In	order	to	avoid	conflating	different	network	relationships,	the	Twitter	network	excludes	

network	ties	that	are	based	solely	on	‘retweets’.	A	retweet	represents	content	that	is	

acknowledged	and	passed	on	by	the	Twitter	user,	but	is	not	generated	by	them.	As	such,	

the	relationship	between	the	retweeter	and	the	retweet’s	content	is	less	direct.	While	the	

mention	of	one	user	in	a	tweet	by	another	user	may	be	representational,	the	mention	of	a	

user	in	a	retweet	can	be	more	akin	to	a	more	disconnected	‘friend-of-a-friend’	(or,	‘friend-

of-a-friend-of-a-friend’,	etc.)	relationship	through	a	chain	of	other	actors	in	the	Twitter	

network.	

	

Analysis	and	Results	

	
Table	1	presents	basic	descriptive	characteristics	for	each	network.	Because	the	nodes	in	

the	two	online	network	measures	represent	a	subset	of	the	nodes	in	the	original	survey,	the	

number	of	observations	is	lower	for	each	online	measure.	Both	online	network	measures	

have	a	higher	density	than	the	survey-based	network,	though	each	of	the	three	networks	

appear	to	resemble	the	others	in	many	respects.	

	
TABLE 1 ABOUT HERE 
	

Correlation	Between	Networks	

	
We	first	turn	our	attention	to	the	question	of	the	degree	of	correlation	between	each	

network	observation.	Correlation	between	networks	is	tested	using	a	quadratic	assignment	

procedure	(QAP)	test	in	to	control	for	structural	processes	that	may	violate	the	assumption	
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of	dyadic	independence	(Krackardt	1987;	Lusher	et	al.	2013).	Instead	of	simply	computing	

the	correlation	across	all	dyads	(potential	pairs	of	actors),	the	QAP	test	uses	a	Monte	Carlo	

simulation	procedure	to	generate	a	distribution	of	Pearson	correlations	in	order	to	test	the	

observed	network	correlations	against	a	null	distribution	while	controlling	for	network	

structure.	Each	correlation	statistic	is	based	upon	pairwise	matching;	thus,	a	sub-sample	of	

the	networks	involved	in	each	QAP	test	was	taken	that	included	only	the	nodes	present	in	

both	networks	involved	in	the	QAP	test.	For	instance,	in	comparing	the	Twitter	mentions	

network	and	the	survey-based	network,	the	survey-based	network	was	restricted	to	only	

include	nodes	also	contained	in	the	Twitter	network.	

	

In	order	to	compare	the	online	collaborative	networks	to	the	respondent-reported	

collaborative	network,	it	is	also	important	to	consider	how	each	network	tie	should	be	

coded.	Hyperlink	and	Twitter	networks	contain	count	data	as	well	as	directionality.	It	is	

possible	for	one	organization’s	website	to	hyperlink	to	another’s	multiple	times,	or	for	an	

organization	to	mention	another	multiple	times	on	Twitter.		While	the	survey-based	

network	can	be	analyzed	as	an	ordinal	network,	with	joint	implementation	ties	as	the	

strongest	form	of	tie	and	informal	consultation	ties	as	the	weakest	form	(as	is	done	in	

Citation	Redacted	(2016)),	for	comparative	purposes	the	most	straightforward	approach	is	

simply	to	treat	all	reported	ties	as	a	collaborative	tie,	thus	assigning	each	potential	tie	a	

value	of	0	(no	tie	reported	from	organization	A	to	B)	or	1	(reported	tie	from	organization	A	

to	B).	Count	data	for	each	of	the	online	network	measures	can	be	similarly	transformed	into	

the	presence	or	absence	of	a	tie.	If	any	hyperlink	is	found	to	exist	between	one	website	and	

another	or	if	an	organization	makes	any	mention	of	another	organization	on	Twitter,	the	
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potential	tie	is	assigned	a	value	of	1	for	the	hyperlink	and	Twitter	network,	respectively,	

and	0	otherwise3.		

	

Table	2	presents	the	final	QAP	correlation	estimate.	Each	correlation	estimate	is	positive	

and	highly	statistically	significant,	thereby	supporting	the	idea	that	organizations	that	self-

reported	collaborative	relationships	are	more	likely	to	hyperlink	to	those	same	

organizations	and	mention	those	organizations	on	Twitter.	Moreover,	it	is	clear	that	the	

Twitter	and	hyperlink	network	measures	are	not	correlated	with	each	other	a	great	deal	

more	than	either	is	correlated	with	the	survey	network	measure.	This	suggests	that	survey	

and	Twitter	networks	do	not	observe	identical	ties,	and	may	each	provide	a	unique	

measure	of	the	collaborative	network,	largely	independent	from	each	other.	

	

TABLE 2 ABOUT HERE 
	

More	generally	from	a	substantive	perspective,	although	statistically	significant	the	

correlation	figures	between	these	networks	are	relatively	low.	In	other	words,	the	online	

network	measures	appear	to	capture	a	different	aspect	of	the	collaborative	network	than	

does	the	survey-based	measure.	This	suggests	that	these	observational	measures	are	not	a	

very	efficient	proxy	for	self-reported,	subjective	survey	measures	of	collaboration.	

However,	the	issue	of	greater	theoretical	interest	is	whether	the	different	network	

 
3 In	a	sensitivity	analysis	we	found	a	small	uptick	in	correlation	between	the	self-reported	collaborative	
network	and	each	of	the	online	network	measures	when	the	threshold	for	defining	a	network	tie	for	
hyperlink	and	Twitter	is	two	or	more	hyperlinks	or	Twitter	mentions,	respectively.	However,	the	correlation	
is	strictly	decreasing	for	every	subsequent	threshold.	Thus,	we	choose	to	code	any	hyperlink	or	Twitter	
mention	between	organizations	as	a	tie	in	the	hyperlink	or	Twitter	network,	respectively,	in	the	analysis.	
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measures	observe	different	specific	ties	but	reveal	similar	overall	network	dynamics,	or	

whether	these	metrics	reveal	different	network	characteristics	or	reflect	certain	sub-

components	of	the	collaborative	network.	QAP	does	not	evaluate	underlying	structural	

differences	(Butts	2008),	and	so	in	the	next	section	we	use	a	different	modeling	approach	

to	evaluate	this	question.	

	

Structural	Characteristics	

To	model	the	structural	characteristics	observed	with	each	network	measure,	we	use	

exponential	random	graph	models	(ERGMs).	ERGMs	essentially	function	like	a	generalized	

linear	regression	logit	model,	as	they	estimate	a	binary	tie	variable	(0	or	1)	between	each	

possible	pair	of	actors.	However,	network	data	exhibit	a	property	known	as	hyper-dyadic	

dependence,	wherein	the	state	of	each	dyadic	relationships	depends	upon	the	states	of	

other	relationships		(Cranmer	and	Desmarais	2015).	An	easy	example	of	this	is	network	

transitivity,	in	which	organizations	A	and	B	might	be	more	likely	to	be	collaborative	

partners	if	they	both	share	a	third	collaborative	partner,	C.	Thus,	just	as	QAP	is	necessary	to	

test	correlation	between	network	measures,	ERGMs	use	a	Markov	chain	Monte	Carlo	

(MCMC)	maximum	likelihood	estimation	(MLE)	approach	to	provide	an	analytic	framework	

that	is	appropriate	for	modeling	complex	relational	dependencies	(Lusher	et	al.	2013;	

Koskinen	and	Daraganova	2013).	We	discuss	the	statistical	mechanics	of	ERGMs	in	greater	

detail	in	appendix	A.	
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While	each	network	measure	results	in	a	different	number	of	observed	nodes	(e.g.,	only	

121	of	the	221	organizations	that	responded	to	the	survey	have	a	Twitter	account),	we	fit	

each	ERGM	to	set	of	221	nodes	observed	via	the	survey	measure.	In	lieu	of	fitting	ERGMs	to	

network	observations	with	different	node	sets,	this	allows	us	to	incorporate	a	common	

node	set	while	still	accounting	for	the	reality	that	a	tie	of	no	value	between	two	

organizations	who	are	both	active	on	Twitter	represents	a	much	different	concept	than	the	

fact	that	there	are	no	ties	to	or	from	organizations	who	do	not	use	Twitter.	To	address	the	

fact	that	an	organization	that	is	not	active	on	Twitter	cannot	possible	have	a	tie	to	or	from	

another	network	actor,	we	use	a	technique	that	accounts	for	structural	zeros	(i.e.,	

impossible	ties)	developed	by	Heaney	and	Leifeld	(2015).	This	approach	models	the	

observed	Twitter	or	hyperlink	network	using	the	entire	221	organization	node	set	while	

fitting	an	edgewise	covariate	that	denotes	any	dyad	that	must	have	a	value	of	zero	since	a	

given	organization	does	not	have	a	website	or	is	not	on	Twitter.	The	parameter	for	this	

covariate	is	not	estimated,	but	rather	is	constrained	to	be	infinitely	small,	essentially	

serving	to	downweight	these	dyads	such	that	these	structural	zeros	do	not	factor	into	other	

parameter	estimates.		

To	further	compare	online	and	offline	network	measures,	additional	ERGM	terms	were	

chosen	to	evaluate	structural	characteristics	identified	in	the	policy	networks	literature	as	

being	important	for	solving	different	types	of	collective	action	problems.	Particular	

arrangements	of	network	ties	foster	different	forms	of	social	capital,	and	thus	are	useful	for	

solving	different	types	of	collective	action	challenges	(Berardo	and	Scholz	2010).	Bridging	

capital	is	associated	with	low-risk	coordination	dilemmas	where	information	sharing	is	a	

priority;	Information	dissemination	tends	to	occur	most	efficiently	via	diffuse	structures	
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that	span	otherwise	disconnected	actors	(Berardo	and	Lubell	2016).	Following	the	

conceptualization	introduced	by	Berardo	and	Scholz	(2010),	we	represent	bridging	capital	

through	two	ERGM	terms:	two-path	and	in-degree.		

	

In	a	directed	network,	the	two-path4	term	adds	a	network	statistic	equal	to	the	number	of	

organizations	that	are	connected	via	an	intermediary	organization.	Thus,	a	two-path	allows	

for	the	increased	coordination	by	connecting	two	previously	disconnected	nodes	through	a	

common	partner.	In-degree	models	the	extent	to	which	incoming	network	ties	are	evenly	

distributed	as	opposed	to	centralized	on	popular	actors.	Concentrating	information	flow	

through	a	relatively	small	number	of	well-connected	actors	in	the	policy	network	reduces	

the	number	of	connections	necessary	for	coordination	among	network	actors	and	improves	

rates	of	information	flow	in	the	policy	network	(Berardo	2014).	We	use	a	geometrically	

weighted	in-degree	(GWID)	term,	which	adds	a	network	statistic	equal	to	the	in-degree	

distribution	in	the	network	that	is	weighted	so	that	each	additional	in-link	has	a	declining	

marginal	effect	on	forming	additional	network	ties	(Morris	et	al.	2008).		

	

Actors	in	networks	with	high	levels	of	bonding	capital	tend	to	arrange	in	tight-knit	clusters.	

This	allows	for	preservation	of	the	network	flow	if	a	link	is	compromised	and	allows	

relatively	independent	verification	of	network	information	flow	(Berardo	and	Scholz	

2010).	However,	robust	linking	patterns	come	at	the	expense	of	network	efficiency,	as	

more	links	are	required	to	spread	information	among	the	same	number	of	actors.	Bonding	

 
4	A	two-path	exists	connecting	organization	i	and	organization	j	through	organization	k	if	Yik	=	Ykj	=	1	(for	i	≠	j)	
(Morris	et	al.	2008).		
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capital	is	represented	through	the	transitivity	and	mutuality	terms.	Transitivity	refers	to	the	

tendency	for	two-paths	to	close;	for	‘friends-of-friends’	to	become	friends	themselves.	This	

process	creates	clusters	of	redundant	ties	in	the	network	characteristic	of	networks	with	

higher	levels	of	bonding	capital	(Berardo	and	Scholz	2010).	Specifically,	here	transitivity	is	

represented	by	a	geometrically-weighted	edgewise	shared	partners	statistic	(GWESP)	that	

models	the	number	of	triangles	incident	on	each	tie5	(Goodreau	et	al.	2009).6	Mutuality	is	

used	to	model	network	reciprocity,	or	the	tendency	for	a	tie	from	one	organization	to	

another	to	be	reciprocated	in	the	other	direction.7	Repeated	reciprocal	interactions	

increases	the	potential	value	of	cooperative	network	ties	thereby	decreasing	the	incentive	

to	defect	in	high-risk	cooperative	network	contexts	(Friedman	1971;	Axelrod	and	Hamilton	

1981).		

	

In	addition	to	endogenous	structural	terms,	the	model	also	includes	key	actor	attributes	

that	may	affect	network	tie	formation.	The	assortative	mixing	parameter	models	the	change	

in	log	odds	of	a	tie	when	both	organizations	in	the	dyad	are	of	the	same	type.	This	controls	

for	a	common	network	observation	known	as	homophily,	in	which	organizations	of	a	

similar	type	are	more	likely	to	link	to	each	other	(Gerber	et	al.	2013).	The	next	three	

coefficients	represent	node	factor	in-link	effects	for	three	organizational	types:	local	

 
5	For	instance,	node	k	is	a	shared	partner	of	nodes	i	and	j	when	Yik	=	Yjk	=	1,	and	the	GWESP	statistic	would	
increase	by	1	if	Yij	=	Yik	=	Yjk	=	1.	
6	Both	the	GWID	and	GWESP	statistics	incorporate	an	additional,	fixed	shape	parameter	that	determines	
determines	the	marginally	decreasing	weight	given	to	each	additional	degree	or	shared	partner.	The	general	
idea	is	that	changes	to	lower	degree	nodes	are	more	important	than	changes	to	higher	degree	nodes	(e.g.,	
going	from	an	indegree	of	0	to	1	rather	than	an	indegree	of	5	to	6),	and	likewise	that	the	strength	of	the	triad	
closure	process	should	marginally	decline	with	every	additional	shared	partner	(Levy	et	al.	2016).	We	return	
briefly	to	this	issue	in	the	results	presented	below,	since	the	choice	of	a	particular	shape	parameter	bears	on	
the	estimated	GWID	and	GWESP	coefficients. 
7	Mutuality	is	estimated	as	the	predicted	change	in	log	odds	of	tie	Yji	given	that	tie	Yij	=	1.	
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governments	(including	county	governments,	city	governments,	and	special	districts),	state	

agencies,	and	university/research	organizations,	respectively.	These	three	organizational	

types	are	called	out	specifically	because	local	governments	and	state	agencies	have	been	

identified	as	central	network	actors	in	similar	policy	network	cases	(Berardo	and	Scholz	

2010;	Schneider	et	al.	2003;	Lubell	and	Fulton	2008),	and	university	extensions	are	shown	

to	be	key	conduits	for	information	sharing	in	local	environmental	policy	networks	

(Hoffman	et	al.	2015).	Specifically	as	relates	to	the	case	of	Puget	Sound,	local	governments	

implement	major	environmental	programs	related	to	shoreline	management,	permitting,	

and	nonpoint	source	pollution,	and	state	agencies	factor	prominently	as	lead	entities	for	

the	federal	Clean	Water	Act	and	salmon	recovery	under	the	Endangered	Species	Act.	

	

Finally,	every	ERGM	includes	an	edges	term,	which	acts	as	a	model	intercept	controlling	for	

baseline	network	density	(simply	the	number	of	observed	edges),	and	an	isolates	term	that	

controls	for	the	number	of	nodes	that	have	no	observed	ties	whatsoever.8	We	use	the	

statnet	package	(statnet.org)	in	R	to	implement	to	estimate	a	separate	ERGM	for	each	

network	with	identical	terms	for	each	model	and	the	ties	for	each	network	serving	as	the	

respective	dependent	variables.	Both	GWESP	and	GWID	shape	parameters	(which	

determine	the	marginally	decreasing	weight	given	to	changes	in	higher	order	degree	or	

shared	partner	values)	were	fixed	at	different	values	for	the	survey,	hyperlink,	and	Twitter	

models	in	order	to	achieve	a	better	model	fit.	Sensitivity	analyses9	varying	the	shape	

 
8 Specifically,	isolates	estimates	the	unlikelihood	of	a	tie	connecting	a	node	to	the	graph	through	just	a	single	
tie.	In	other	words,	the	parameter	represents	the	change	in	log	odds	of	Yij	=	0	if	Yik=	0	for	all	k	≠	j	and	Yki=	0	for	
all	k.	 
9	Sensitivity	tests	used	fairly	standard	fixed	shape	parameter	values	between	0.5	and	2.5	(Levy	2016).	When	
the	shape	parameter	equals	0,	only	changes	from	0	to	1	degree	(or	0	to	1	shared	partner)	are	counted,	and	
when	the	shape	parameter	equals	∞,	all	changes	are	given	equal	weight.	
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parameter	revealed	that	the	choice	of	a	particular	shape	parameter	value	does	not	

substantially	affect	parameter	estimates.	Appendix	A	presents	goodness-of-fit	statistics	for	

each	ERGM	model	presented.		

	

If	online	and	survey	network	observations	are	largely	driven	by	the	same	underlying	

network	processes,	we	would	expect	our	model	results	to	reveal	similarities	in	structural	

patterns	of	tie	formation	across	network	modes.	The	estimation	results	in	figure	1	indicate	

many	structural	similarities	between	online-	and	survey-based	network	observations,	but	

with	a	few	notable	divergences.	All	three	network	estimates	suggest	a	similar	bonding	

capital	for	the	policy	network.	The	estimated	values	for	transitivity	across	all	models	

suggest	a	similar	propensity	across	both	online	and	survey-based	network	measures	for	

triadic	closure.	In	the	context	of	bonding	capital,	this	represents	similar	levels	of	clustering,	

with	the	implied	potential	for	cohesion	and	development	of	trust	and	social	norms.	

FIGURE	1	ABOUT	HERE	

	

While	the	parameter	estimates	for	the	mutual	term	are	positive	and	highly	significant	for	

all	three	modes.	This	is	matches	the	strong	tendency	for	reciprocity	often	exhibited	in	

policy	networks	(Berardo	and	Scholz	2010;	Isett	2005;	Park	et	al.	2009);	in	general,	norms	

of	reciprocity	are	key	in	maintaining	collaborative	ties	in	any	policy	network,	making	it	

non-reciprocal	dyadic	relationships	unlikely	(Henry	et	al.	2011).	What	is	most	notable	for	

the	problem	at	hand,	however,	is	that	the	magnitude	of	reciprocity	is	considerably	greater	

in	the	survey-based	model.	We	posit	that	because	the	survey	instrument	was	designed	to	

elicit	information	on	particular	collaborative	relationships	(e.g.,	two	organizations	that	
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jointly	develop	plans	or	policies),	and	this	specificity	of	measurement	induces	relatively	

high	observed	reciprocity.	Collaboration	inherently	implies	mutual	participation,	and	thus	

reciprocity	should	be	the	expected	outcome	a	survey	instrument	that	effectively	measures	

collaborative	ties.	In	contrast,	hyperlinks	and	Twitter	mentions	are	less	narrowly	

contextualized;	unlike	collaboration,	these	other	functions	imply	a	lesser	degree	of	mutual	

engagement.10	

	

While	the	estimate	of	network	processes	associated	with	bonding	capital	is	consistent	

across	all	three	network	measures,	bridging	capital	structural	characteristics	are	more	

disparate.	All	three	model	results	indicate	a	negative	coefficient	for	the	two-path	term,	

indicating	actors	tend	to	avoid	maintaining	sparse	linkages	that	share	information	or	

facilitate	coordination	more	efficiently	across	all	three	network	measures.	However,	the	

estimated	results	of	the	in-degree	term	diverge	across	network	measures.	The	in-degree	

term	is	negative	for	the	survey	model,	which	indicates	a	tendency	for	in-links	to	be	

centralized	on	popular	actors	(Levy	2016).	Both	online	network	measures	exhibit	the	

opposite	tendency,	with	more	evenly	dispersed	in-links	among	network	actors.	This	

contrasts	with	previous	work	finding	that	online	links	tend	accrue	to	particular	highly-

influential	organizations	(Pilny	and	Shumate	2012;	McNutt	and	Wellstead	2010).	One	

possibility	is	that	the	relatively	low	transaction	cost	of	forming	additional	online	linkages	

caused	the	observed	pattern	of	relative	diffusion.	Perhaps	more	likely,	however,	is	that	

response	burden	plays	a	role	in	survey	responses,	such	that	on	a	survey	instrument	

 
10	Eagle	et	al.	(2009)	also	raise	the	possibility	of	bias	in	the	survey	instrument	with	respect	to	
disproportionately	measuring	recent	interactions,	as	well	as	more	salient	ties,	which	could	serve	to	bias	the	
reciprocity	estimate	upwards	
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respondents	are	more	likely	to	name	a	few	highly	visible	organizations	as	particularly	

salient	linkages.	

	

Estimates	of	the	non-structural	terms	indicate	similar	linking	behavior	to	specific	actor	

types	in	all	three	networks.	There	is	a	propensity	for	organizations	to	disproportionately	

link	to	state	agencies	across	all	networks,	perhaps	indicating	a	similar	role	in	each	network	

in	providing	information	or	support	to	other	organizations.	Surprisingly	given	previous	

research,	there	is	not	a	tendency	for	organizations	to	link	to	either	local	governments	or	

universities,	though	this	is	a	pattern	that	is	likewise	common	to	all	network	measures.	One	

notable	difference	across	networks	is	the	assortative	mixing	term,	which	indicates	a	

tendency	for	homophily	in	both	online	network	measures	but	not	in	the	survey-based	

network.	If	homophily	links	are	disproportionately	considered	routine	or	perfunctory,	it	is	

possible	survey	respondents	would	not	recall	them	(Eagle	et	al.	2009;	Marsden	1990).		

	

Multiplex	Relationships	

An	additional	ERGM	for	each	network	was	conducted	to	estimate	the	association	between	

each	network	measure	and	the	other	two	network	measures.	While	QAP	was	used	to	

estimate	the	correlation	between	each	of	the	network	measures	independently,	an	ERGM	

can	be	used	to	estimate	the	joint	association	of	two	networks	with	tie	formation	in	a	third	

network	while	controlling	for	the	network	processes	of	the	dependent	network.	These	

models	thus	provide	an	additional	way	of	gauging	the	strength	of	the	association	between	

alternative	measures,	and	further	test	the	extent	to	which	each	network	independently	
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contributes	unique	information	predictive	of	tie	formation	in	each	of	the	other	network	

measures.	

INSERT	FIGURE	2	ABOUT	HERE	

	

The	results	in	figure	2	are	from	models	that	contain	all	terms	present	in	the	models	

presented	in	figure	1,	with	the	addition	of	covariates	for	the	presence	of	a	tie	between	two	

actors	in	one	or	both	alternative	network	measures.	Full	model	results	are	shown	in	table	

B2;	figure	2	shows	the	subset	of	coefficients	that	are	of	substantive	interest.	Figure	2	

demonstrates	a	strong	positive	relationship	among	all	three	networks.	Each	network’s	

relative	predictive	power	can	be	assessed	by	comparing	the	estimates	in	figure	2	to	the	

magnitude	of	the	structural	characteristics	measured	previously.11	We	find	that	each	

network	observation	method	independently	predicts	ties	in	each	of	the	other	networks	

with	roughly	the	same	efficiency	as	mutuality	or	transitivity.	Thus,	all	else	equal,	we	would	

assess	the	probability	of	a	tie	in	one	network	given	the	presence	of	a	tie	in	either	of	the	

other	networks	as	roughly	equal	to	the	probability	of	the	formation	of	a	reciprocal	tie	or	of	

a	tie	to	a	‘friend-of-a-friend’,	both	of	which	have	previously	been	used	as	possible	

indicators	of,	or	to	make	corrections	to,	cognitive	errors	in	survey	responses	(McCarty	et	al.	

2007;	Marsden	1990;	Huisman	2014).	We	explore	the	potential	of	such	predictions	in	the	

following	section.	

	

 
11	Because	estimated	probabilities	of	network	tie	formation	are	nonlinear,	the	estimated	marginal	effect	of	
each	network	tie	on	the	probability	of	predicting	the	same	tie	in	another	network	varies	according	to	the	
context.	



24	

Online	Interactions	For	Predicting	Self-Reported	Collaboration	

Previous	results	pertaining	to	overall	graph	correlations	(assessed	using	QAP)	address	the	

general	relationship	between	the	three	network	measures,	and	the	ERGM	results	in	the	

preceding	section	speak	to	structural	similarities	in	the	three	measures.	It	is	also	relevant	

to	consider	how	well	network	measures	are	able	to	approximate	the	actual	location	of	

edges	in	the	other	networks.	Because	surveys	represent	the	current	state-of-the-art	in	

measuring	policy	networks,	we	focus	this	section	particularly	on	exploring	how	well	

models	fit	to	online	network	measures	are	able	to	reproduce	the	edges	observed	in	the	

survey-generated	network.	To	do	this,	we	repurpose	the	idea	of	precision-recall	curves	as	a	

way	to	test	not	just	goodness-of-fit	(in	terms	of	how	well	a	model	fits	the	data	to	which	it	

was	fit),	but	as	a	way	to	compare	how	well	different	models	(fit	to	offline	and	online	

network	measures)	are	able	to	predict	the	subjective	offline	collaboration	patterns	

reported	by	survey	respondents.	

	

Precision-recall	(PR)	curves	are	often	used	to	test	ERGM	goodness-of-fit	by	assessing	the	

extent	to	which	a	model	is	able	to	successfully	simulate	networks	that	resemble	the	

observed	network	(Heaney	and	Leifeld	2015).	While	goodness-of-fit	statistics	that	assess	

the	number	of	certain	network	structures	that	occur	in	simulations	are	useful	for	gauging	

whether	the	ERGM	reproduces	topologically	similar	networks,	a	PR	curve	compares	the	

actual	location	of	edges	in	the	simulated	graphs	to	the	observed	graph.	Recall	refers	to	the	

extent	to	which	a	model	is	able	to	predict	edges	that	were	observed	(i.e.,	to	avoid	false	

negatives	by	recalling	existing	network	ties).	One	way	for	a	model	to	achieve	perfect	recall	

would	be	to	predict	a	complete	network	in	which	every	edge	exists;	such	a	model	is	of	
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course	not	desirable,	and	so	there	must	be	a	penalty	for	false	positives	(edges	predicted	

that	are	not	in	fact	observed).	The	ability	of	a	model	to	minimize	false	positives	is	referred	

to	as	precision,	which	is	calculated	as	the	proportion	of	predicted	edges	that	are	observed	

in	the	data	over	the	total	number	of	predicted	edges.	By	plotting	recall	(ability	to	avoid	

false	negatives)	against	precision	(ability	to	avoid	false	positives),	we	can	gauge	the	extent	

to	which	a	model	successfully	predicts	observed	network	structures.	The	intuition	behind	

this	comparison	is	precision	will	decline	as	recall	increases,	since	a	model	that	simply	

generates	more	ties	will	have	a	higher	recall	rate,	but	precision	will	decline	since	more	

false	positives	are	a	natural	consequence	of	reducing	the	rate	of	false	negatives.	A	well-

fitting	model,	however,	should	perform	better	in	this	regard	by	improving	recall	without	

sacrificing	a	great	deal	of	precision.	Specifically,	instead	of	just	increasing	the	number	of	

predicted	ties	(thereby	increasing	recall	and	decreasing	precision),	a	model	with	useful	

structural	and	exogenous	covariates	should	be	able	to	accurately	predict	more	observed	

edges	while	avoiding	false	positives.	

 
FIGURE 3 ABOUT HERE 
 
	
Figure	3	presents	precision	recall	curves	generated	from	each	model	with	respect	to	

predicting	edges	from	the	original	survey-based	network	measure.	In	addition	to	using	

models	fit	to	each	of	the	three	network	measures,	we	also	examine	a	fourth	model	fit	to	the	

survey-generated	network	that	includes	as	covariates	a	series	of	indicators	for	whether	or	

not	two	organizations	have	an	observed	hyperlink	tie,	twitter	tie,	or	both.12	Figure	3	also	

 
12	These	models	also	control	for	whether	or	not	each	organization	has	a	website	and	and	an	active	Twitter	
account,	so	that	the	estimated	effect	for	having	an	online	network	tie	is	conditioned	on	whether	or	not	each	
organization	could	possibly	have	such	a	tie.	
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includes	a	precision-recall	curve	for	a	random	graph	model	(i.e.,	an	ERGM	with	just	an	

edges	term)	for	reference.	To	fit	each	curve,	we	simulate	10,000	hypothetical	networks	

based	upon	each	fitted	ERGM,	and	for	each	simulation,	record	the	level	of	precision	and	

recall	with	respect	to	the	survey-generated	network.	Each	path	in	figure	3	thus	summarizes	

the	relationship	between	precision	and	recall	of	the	survey-generated	network	across	the	

10,000	simulations	generated	from	a	given	model.	

	

Turning	to	the	items	of	interest	(how	well	the	hyperlink	and	twitter	network-based	models	

are	able	to	predict	surveyed	edges),	we	observe	that	both	online	network	measures	alone	

do	a	reasonably	strong	job	of	predicting	offline	ties	compared	to	random	networks.	One	

would	not	expect	either	model	to	perform	quite	as	well	as	the	survey-based	model,	given	

that	the	“Survey”	curve	reflects	the	ability	to	generate	the	dependent	variable	to	which	it	

was	fit	as	opposed	to	predicting	an	out-of-sample	network.	Nonetheless,	both	online	

measures	strongly	outperform	the	random	edges	model	in	precision	and	recall,	evidencing	

that	readily	observable	online	network	measures	can	offer	insights	into	offline	

collaborative	behavior	prior,	or	in	addition	to,	survey-based	data	measures.	

	

Perhaps	more	important	is	the	improvement	of	the	“Survey	with	online	tie	covariates”	

curve	compared	to	the	“Survey”	curve.	This	suggests	a	survey-based	network	model	that	

includes	hyperlink	and	Twitter	network	data	as	additional	covariates	will	perform	

considerably	better	at	predicting	network	ties	identified	by	a	survey	than	a	model	based	

solely	on	structural	and	actor	parameters	within	the	survey-based	network.		In	cases	of	

missing	network	data,	simulations	of	the	complete	network	based	on	ERGMs	or	use	of	
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simple	network	processes	can	help	to	recover	a	distribution	of	possible	full	network	states	

(Goodreau	et	al.	2008;	Huisman	2014).	Our	results	suggest	using	a	data	recovery	method	

that	includes	hyperlink	and	Twitter	network	covariates	could	recover	the	unobserved	

network	more	precisely,	leading	to	more	accurate	imputations	of	the	full	network	when	

missing	links	occur	in	the	data.	

	

To	better	illustrate	this,	we	can	summarize	the	area	under	each	PR	curve,	as	shown	in	

figure	4.	Figure	4	more	clearly	shows	the	differences	between	each	model,	in	particular	that	

while	the	precision-recall	curves	for	the	hyperlink-based	ERGM	and	twitter-based	ERGMs	

diverge	in	figure	3,	overall	the	two	models	perform	similarly	with	respect	to	predicting	the	

survey-based	network	(and	that	both	models	far	outperform	the	random	network	graph).	

Figure	4	also	shows	the	survey	model	that	includes	hyperlink	and	Twitter	edge	covariate	

terms	clearly	outperforms	the	model	that	does	not	include	these	terms.		

	

FIGURE	4	ABOUT	HERE	

	

Discussion	

The	three	sets	of	results	above	(overall	network	graph	correlation,	parameter-based	

inferences	from	ERGMs,	and	predicting	survey-reported	ties)	collectively	evidence	that	

online	measures	of	collaborative	behavior	can	approximate	subjective	reports	of	

interorganizational	collaboration.	To	be	sure,	the	QAP	correlation	and	PR	curve	results	

clearly	demonstrate	that	neither	online	measure	used	in	this	study	(webpage	hyperlinks	

and	Twitter	mentions)	is	able	to	perfectly	replicate	the	survey-based	results	on	its	own.	
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However,	to	focus	on	this	aspect	of	the	results	would	be	to	miss	the	potential	for	alternative	

online	network	data	to	complement	survey-based	network	data	collection	methods.		

	

The	original	survey	instrument	used	to	collect	data	on	offline	collaboration	took	several	

months	and	thousands	of	dollars	to	develop	and	implement.	Even	then,	it	could	only	be	

used	to	collect	data	at	a	single	cross-sectional	instance.	In	contrast,	measures	of	online	

collaboration	were	collected	freely,	within	about	a	day	(not	factoring	in	time	spent	learning	

the	appropriate	field	methods	and	developing	the	code).	The	expediency	and	minimal	cost	

of	online	network	data	collection	methods	thus	hold	great	potential	for	ongoing	research	of	

policy	networks	and	collaborative	governance.	In	particular,	survey-based	longitudinal	

analyses	of	policy	networks	have	typically	been	limited	to	very	few,	or	even	just	two,	

periods	(e.g.,	Berardo	and	Scholz	2010).	This	is	not	just	due	to	the	time	and	effort	required	

to	design	and	implement	surveys,	but	also	because	the	intrusiveness	of	surveys	can	make	it	

difficult	to	collected	repeated	measures	from	sample	subjects.	Online	network	measures	

obtainable	via	passive	data	collection	methods	offer	an	unintrusive	alternative	that	can	be	

collected	frequently,	if	not	constantly,	in	order	to	measure	ongoing	changes	in	policy	

networks	and	assess	collaboration	in	near-real	time.		

	

One	future	possibility,	given	the	demonstrated	divergence	we	observe	between	offline	and	

online	network	measures,	might	be	to	supplement	a	limited	number	of	surveys	with	more	

frequent	online	data	collection.	This	would	provide	a	way	to	gauge	the	extent	to	which	

online	measures	reflect	meaningful	policy	interactions	(which	are	typically	of	primary	

interest	both	to	policymakers	and	researchers)	while	enabling	a	frequency	and	volume	of	
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network	data	that	would	otherwise	be	unobtainable.	As	demonstrated	herein	and	by	Yi	and	

Scholz	(2016),	other	forms	of	affiliation	data	such	as	membership	in	interorganizational	

forums	can	also	provide	a	supplementary	metric	to	understand	offline	collaboration.	Group	

membership	data	are	often	also	readily	obtainable,	and	can	help	researchers	to	further	

triangulate	policy	networks.	This	analysis	suggests	it	would	prove	fruitful	to	explore	both	

forms	of	alternative	network	measurements,	group	co-membership	and	online	

interactions,	as	possible	covariates	for	more	accurate	or	precise	imputation	methods	for	

handling	missing	network	data,	as	well	as	exploring	possible	limitations	of	surveys	to	

capture	all	policy	network	linkages.	

	

An	additional	issue	of	salience	is	why	the	inter-measure	correlation	estimates	produced	in	

this	analysis	are	so	much	lower	than	the	correlations	that	Yi	and	Scholz	(2016)	observe.	Yi	

and	Scholz	(2016)	do	not	examine	subjectively	reported	collaborative	partners;	the	offline	

measures	used	by	Yi	and	Scholz	(2016)	are	co-membership	in	collaborative	governance	

partnerships	(e.g.,	a	regional	planning	forum)	and	co-mentions	in	media	outlets	(e.g.,	both	

organizations	being	mentioned	in	the	same	newspaper	article).	These	types	of	ties	likely	

exhibit	different	tendencies	than	self-reported	survey	measures,	both	for	methodological	

and	conceptual	reasons.	First,	the	survey	measure	is	directed,	whereas	co-membership	and	

co-mentions	are	not,	which	means	that	there	are	far	more	potential	ties	in	the	survey-based	

network.	Second,	the	survey	instrument	asked	respondents	to	report	on	up	to	five	

organizations	with	which	they	partner	to	implement	projects	or	programs,	participate	in	

joint	planning,	or	regularly	share	information,	respectively.	These	are	more	specific,	

narrowly	defined	metrics	that	likely	result	in	a	more	restrictive	set	of	identified	network	
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ties.	Although	the	nature	of	the	metrics	differ,	there	might	also	be	additional	technical	

reasons	why	inter-network	QAP	correlation	estimates	were	so	much	larger	in	their	

analysis.	While	Yi	and	Scholz	(2016)	consider	node-level	characteristics	of	a	large-scale	

network,	their	QAP	and	ERGM	analyses	of	network	structures	focus	on	a	‘core’	network	of	

25	actors.	Larger	networks	are	inherently	less	dense	simply	because	the	potential	number	

of	ties	each	actor	can	have	is	so	large,	but	the	number	of	ties	any	one	actor	has	does	not	

necessarily	change	(Bodin	and	Prell	2011).	By	the	same	token,	one	would	expect	

correlation	to	decrease	as	network	size	increases,	because	the	number	of	possible	ties	

increases	much	more	rapidly	than	the	number	of	actual	ties.	Thus,	these	results	help	bridge	

the	findings	of	Yi	and	Scholz	(2016)	to	large-scale	policy	networks	often	observed	in	

practice.	As	the	boundaries	applied	to	a	policy	network	are	expanded,	the	network	is	likely	

to	appear	to	be	much	less	dense	and	more	segmented	than	when	viewing	that	same	

network	with	a	narrower,	more	restrictive	lens.	

	

While	both	online	network	measures	have	been	shown	to	correspond	to	subjective	self-

reported	collaborative	activities,	there	is	a	challenge	in	interpreting	the	meaning	of	the	

online	network	linkages.	Surveys,	though	costly	to	administer,	are	also	more	precisely	

interpretable	than	online	network	methods.	Network	linkages	depend	on	the	purpose	they	

serve	for	the	organizations	that	utilize	them.	For	example,	different	organizations	may	treat	

Twitter	primarily	as	a	communication	tool	or	as	a	symbolic	network	used	for	purposes	

significantly	different	than	the	collaborative	activities	elicited	by	the	survey,	to	the	extent	

that	they	use	it	at	all	(Segerberg	and	Bennett	2011).	Actors	in	a	political	environment	may	

often	link	to	their	opponents	as	well	as	their	allies,	indicating	an	adversarial	relationship	
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rather	than	a	collaborative	one	(Elgin,	2011).	As	mentioned	previously,	absence	of	cost	

associated	with	sustaining	internet	linkages	can	also	result	in	a	proliferation	of	symbolic	or	

diffuse	links.	While	most	of	these	considerations	are	beyond	the	scope	of	the	present	

analysis,	they	must	be	taken	into	consideration	when	interpreting	network	measures	based	

upon	online	behavior.	They	also	provide	avenues	for	further	research.	Qualitatively	coding	

the	context	associated	with	online	linkages	could	help	more	precisely	identify	those	that	

represent	collaborative	ties,	although	this	would	come	at	a	cost	of	reduced	speed	and	ease	

of	network	analysis.		

Conclusion	

While	technical	advances	have	created	new	avenues	to	measure	collaboration	among	

organizations	in	a	policy	network,	new	methodologies	to	exploit	these	new	opportunities	

are	still	in	the	process	of	being	developed.	This	study	helps	to	extend	previous	work	on	

alternative	network	measures	to	explicitly	compare	a	survey-based	network	measure	to	

online	network	measures	constructed	using	hyperlink	and	Twitter	data	for	a	large	policy	

network.	Our	results	indicate	that	online	measures	generate	broadly	similar	network-scale	

conclusions	(e.g.,	similar	estimates	for	structural	ERGM	parameters),	but	that	the	online	

measures	capture	tie	patterns	that	are	not	observed	via	survey	(and	vice	versa).	Our	results	

show	that	each	of	the	network	ties	(both	survey-based	and	web	activity-based)	are	

strongly	indicative	of	tie	formation	activity	in	each	of	the	other	networks,	simulation-based	

measures	of	correlation	indicate	highly	significant	correlation	between	survey-based	and	

online	network	observations,	and	the	inclusion	of	online	network	measures	as	covariates	

greatly	improved	tie-prediction	in	a	model	of	the	survey-based	network.	
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However,	the	low	level	of	correlation	measured	by	the	QAP	test,	and	relatively	small	area	

under	the	precision-recall	curves	associated	with	each	of	the	online	network’s	estimations	

of	survey	ties	suggests	online	behavior	does	not	precisely	replicate	the	results	of	survey	

instruments	which	are	a	current	standard	practice	for	collaborative	network	data	

collection.	From	the	standpoint	of	supplanting	survey-based	network	measures,	online	

measures	are	an	efficient	(given	ease	of	collection)	but	perhaps	not	very	effective	

substitute.	Rather,	online	methods	of	network	observation	show	great	promise	in	

complementing	existing	survey	methods	rather	than	supplanting	them.		

	

While	it	may	not	be	feasible	to	repeatedly	administer	surveys	in	order	to	dynamically	

measure	network	change,	nor	to	measure	network	ties	for	a	policy	network	involving	

thousands	of	actors,	online	measures	make	such	network	observations	within	the	realm	of	

possibility	for	the	researcher.	Although	using	online	network	methods	alone	to	measure	

these	policy	networks	would	likely	be	erroneous	in	many	contexts,	future	research	that	

focuses	on	how	best	to	use	these	methods	in	concert	could	open	up	many	new	

opportunities	to	investigate	how	networks	change	in	response	to	policy	or	how	different	

network	characteristics	affect	policy	outcomes	across	many	networks.	Combining	multiple	

measures	of	a	policy	network	offers	potential	benefits	both	for	making	comparisons	across	

policy	networks	and	for	understanding	collaborative	dynamics	within	a	given	network.	The	

fact	that	the	online	and	survey-based	measures	generate	similar	network-level	inferences	

from	divergent	graph	patterns	indicates	potential	for	jointly	using	online	and	offline	

metrics	to	triangulate	key	inter-network	differences.	Moreover,	given	that	organizations	

interact	with	one	another	in	numerous	ways,	developing	a	suite	of	metrics	for	more	
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holistically	assessing	network	ties	will	allow	for	a	more	nuanced	understanding	of	

governance	processes	that	account	for	the	various	forms	that	collaborative	relationships	

can	take.	

	

Finally,	just	as	modern	computational	field	methods	allow	for	collecting	online	network	

measures,	text	analysis	methods	enable	new	and	better	ways	of	measuring	offline	network	

ties	on	a	large	scale.	For	instance,	automated	text	analysis	of	meeting	minutes	can	provide	a	

more	nuanced	assessment	of	ties	within	inter-organizational	collaborative	groups	than	can	

simple	membership	rosters.	Coupling	these	types	of	methods	offers	the	potential	to	

measure	policy	networks	with	greater	frequency	and	detail,	even	without	the	use	of	

surveys.	

	

References	

Adamic,	Lada	A.,	and	Eytan	Adar.	2001.	“You	Are	What	You	Link.”	In	10th	Annual	
International	World	Wide	Web	Conference,	Hong	Kong.	Retrieved	June,	19:2001.	
www10.org.	

Andersson,	Krister	P.,	and	Elinor	Ostrom.	2008.	“Analyzing	Decentralized	Resource	
Regimes	from	a	Polycentric	Perspective.”	Policy	Sciences	41	(1).	Springer	US:	71–93.	

Auer,	Matthew	R.	2011.	“The	Policy	Sciences	of	Social	Media.”	Policy	Studies	Journal:	The	
Journal	of	the	Policy	Studies	Organization	39	(4).	Blackwell	Publishing	Inc:	709–36.	

Axelrod,	R.,	and	W.	D.	Hamilton.	1981.	“The	Evolution	of	Cooperation.”	Science	211	(4489):	
1390–96.	

Berardo,	Ramiro.	2014.	“Bridging	and	Bonding	Capital	in	Two-Mode	Collaboration	
Networks.”	Policy	Studies	Journal	42	(2):	197–225.	

Berardo,	Ramiro,	and	Mark	Lubell.	2016.	“Understanding	What	Shapes	a	Polycentric	
Governance	System.”	Public	Administration	Review,	March.	doi:10.1111/puar.12532.	

Berardo,	Ramiro,	and	John	T.	Scholz.	2010.	“Self-Organizing	Policy	Networks:	Risk,	Partner	
Selection,	and	Cooperation	in	Estuaries.”	American	Journal	of	Political	Science	54	(3):	
632–49.	

Bodin,	Ö.,	and	C.	Prell.	2011.	Social	Networks	and	Natural	Resource	Management:	
Uncovering	the	Social	Fabric	of	Environmental	Governance.	Cambridge	University	Press.	



34	

Butts,	Carter	T.	2008.	“Social	Network	Analysis	with	Sna.”	Journal	of	Statistical	Software	24	
(6).	American	Statistical	Association:	1–51.	

Calanni,	John	C.,	Saba	N.	Siddiki,	Chris	M.	Weible,	and	William	D.	Leach.	2015.	“Explaining	
Coordination	in	Collaborative	Partnerships	and	Clarifying	the	Scope	of	the	Belief	
Homophily	Hypothesis.”	Journal	of	Public	Administration	Research	and	Theory	25	(3):	
901–27.	

Carpenter,	R.	Charli,	and	Betcy	Jose.	2012.	“Transnational	Issue	Networks	in	Real	and	
Virtual	Space:	The	Case	of	Women,	Peace	and	Security.”	Global	Networks-A	Journal	Of	
Transnational	Affairs	12	(4).	Blackwell	Publishing	Ltd:	525–43.	

Craft,	Jonathan,	Michael	Howlett,	Mark	Crawford,	and	Kathleen	McNutt.	2013.	“Assessing	
Policy	Capacity	for	Climate	Change	Adaptation:	Governance	Arrangements,	Resource	
Deployments,	and	Analytical	Skills	in	Canadian	Infrastructure	Policy	Making.”	The	
Review	of	Policy	Research	30	(1).	Wiley	Online	Library:	42–65.	

Cranmer,	Skyler	J.,	and	Bruce	A.	Desmarais.	2011.	“Inferential	Network	Analysis	with	
Exponential	Random	Graph	Models.”	Political	Analysis:	An	Annual	Publication	of	the	
Methodology	Section	of	the	American	Political	Science	Association	19	(1):	66–86.	

———.	2015.	“A	Critique	of	Dyadic	Design.”	arXiv	[stat.ME].	arXiv.	
http://arxiv.org/abs/1512.00538.	

Desmarais,	Bruce	A.,	and	Skyler	J.	Cranmer.	2012.	“Micro-Level	Interpretation	of	
Exponential	Random	Graph	Models	with	Application	to	Estuary	Networks.”	Policy	
Studies	Journal	40	(3):	402–34.	

Digrazia,	Joseph,	Karissa	McKelvey,	Johan	Bollen,	and	Fabio	Rojas.	2013.	“More	Tweets,	
More	Votes:	Social	Media	as	a	Quantitative	Indicator	of	Political	Behavior.”	PloS	One	8	
(11):	e79449.	

Eagle,	Nathan,	Alex	Sandy	Pentland,	and	David	Lazer.	2009.	“Inferring	Friendship	Network	
Structure	by	Using	Mobile	Phone	Data.”	Proceedings	of	the	National	Academy	of	
Sciences	of	the	United	States	of	America	106	(36):	15274–78.	

Elgin,	Dallas	J.	2015.	“Utilizing	Hyperlink	Network	Analysis	to	Examine	Climate	Change	
Supporters	and	Opponents.”	The	Review	of	Policy	Research	32	(2):	226–45.	

Feiock,	Richard	C.	2013.	“The	Institutional	Collective	Action	Framework.”	Policy	Studies	
Journal	41	(3):	397–425.	

Friedman,	James	W.	1971.	“A	Non-Cooperative	Equilibrium	for	Supergames.”	The	Review	of	
Economic	Studies	38	(1):	1.	

Gerber,	Elisabeth	R.,	Adam	D.	Henry,	and	Mark	Lubell.	2013.	“Political	Homophily	and	
Collaboration	in	Regional	Planning	Networks.”	American	Journal	of	Political	Science	57	
(3):	598–610.	

Geyer,	Charles	J.,	and	Elizabeth	A.	Thompson.	1992.	“Constrained	Monte	Carlo	Maximum	
Likelihood	for	Dependent	Data.”	Journal	of	the	Royal	Statistical	Society.	Series	B,	
Statistical	Methodology	54	(3).	[Royal	Statistical	Society,	Wiley]:	657–99.	

Goodreau,	Steven	M.,	Mark	S.	Handcock,	David	R.	Hunter,	Carter	T.	Butts,	and	Martina	
Morris.	2008.	“A	Statnet	Tutorial.”	Journal	of	Statistical	Software	24	(9):	1–27.	

Goodreau,	Steven	M.,	James	A.	Kitts,	and	Martina	Morris.	2009.	“Birds	of	a	Feather,	or	
Friend	of	a	Friend?	Using	Exponential	Random	Graph	Models	to	Investigate	Adolescent	
Social	Networks.”	Demography	46	(1):	103–25.	

Heaney,	Michael	T.,	and	Philip	Leifeld.	2015.	“Collective	Action	and	Leadership	inside	
Lobbying	Coalitions.”	In	.	http://sites.lsa.umich.edu/mheaney/wp-



35	

content/uploads/sites/38/2015/06/Heaney-Leifeld.pdf.	
Heclo,	H.	1978.	“Issue	Networks	and	the	Executive	Establishment.”	In	The	New	American	

Political	System,	edited	by	A.	King,	94:87–124.	American	Enterprise	Institute.	
Henry,	Adam	D.,	Mark	Lubell,	and	Mike	McCoy.	2011.	“Belief	Systems	and	Social	Capital	as	

Drivers	of	Policy	Network	Structure:	The	Case	of	California	Regional	Planning.”	Journal	
of	Public	Administration	Research	and	Theory	21	(3):	419–44.	

———.	2012.	“Survey-Based	Measurement	of	Public	Management	and	Policy	Networks.”	
Journal	of	Policy	Analysis	and	Management	31	(2):	432–52.	

Hoffman,	M.,	M.	Lubell,	and	V.	Hillis.	2015.	“Network-Smart	Extension	Could	Catalyze	Social	
Learning.”	The	Californians.	californiaagriculture.ucanr.org.	
http://californiaagriculture.ucanr.org/landingpage.cfm?article=ca.E.v069n02p113&fu
lltext=yes.	

Huisman,	Mark.	2014.	“Imputation	of	Missing	Network	Data:	Some	Simple	Procedures.”	In	
Encyclopedia	of	Social	Network	Analysis	and	Mining,	707–15.	

Ingold,	Karin,	and	Philip	Leifeld.	2016.	“Structural	and	Institutional	Determinants	of	
Influence	Reputation:	A	Comparison	of	Collaborative	and	Adversarial	Policy	Networks	
in	Decision	Making	and	Implementation.”	Journal	of	Public	Administration	Research	
and	Theory	26	(1):	1–18.	

Isett,	K.	R.	2005.	“The	Evolution	of	Dyadic	Interorganizational	Relationships	in	a	Network	of	
Publicly	Funded	Nonprofit	Agencies.”	Journal	of	Public	Administration	Research	and	
Theory	15	(1):	149–65.	

Jackson,	Michele	H.	1997.	“Assessing	the	Structure	of	Communication	on	the	World	Wide	
Web.”	Journal	of	Computer-Mediated	Communication:	JCMC	3	(1).	Blackwell	Publishing	
Ltd:	0–0.	

Jung,	Kyujin,	Se	Jung	Park,	Wei-Ning	Wu,	and	Han	Woo	Park.	2014.	“A	Webometric	
Approach	to	Policy	Analysis	and	Management	Using	Exponential	Random	Graph	
Models.”	Quality	&	Quantity	49	(2).	Springer	Netherlands:	581–98.	

Koskinen,	Johan,	and	G.	Daraganova.	2013.	“Exponential	Random	Graph	Model	
Fundamentals.”	In	Exponential	Random	Graph	Models	for	Social	Networks:	Theory,	
Methods,	and	Applications,	edited	by	Dean	Lusher,	Johan	Koskinen,	and	Garry	Robins,	
49–76.	New	York,	NY:	Cambridge	University	Press.	

Krackardt,	David.	1987.	“QAP	Partialling	as	a	Test	of	Spuriousness.”	Social	Networks	9	(2):	
171–86.	

Leifeld,	Philip.	2013.	“Reconceptualizing	Major	Policy	Change	in	the	Advocacy	Coalition	
Framework:	A	Discourse	Network	Analysis	of	German	Pension	Politics.”	Policy	Studies	
Journal	41	(1):	169–98.	

Leifeld,	Philip,	and	Volker	Schneider.	2012.	“Information	Exchange	in	Policy	Networks.”	
American	Journal	of	Political	Science	56	(3):	731–44.	

Levy,	Michael	A.	2016.	“Gwdegree:	Improving	Interpretation	of	Geometrically-Weighted	
Degree	Estimates	in	Exponential	Random	Graph	Models.”	The	Journal	of	Open	Source	
Software	1	(3).	doi:10.21105/joss.00036.	

Levy,	Michael	A.,	Mark	Lubell,	Philip	Leifeld,	and	Skyler	Cranmer.	2016.	“Estimating	and	
Interpreting	Geometrically	Weighted	Statistics	in	Exponential	Random	Graph	Models.”	
In	.	

Lubell,	Mark.	2013.	“Governing	Institutional	Complexity:	The	Ecology	of	Games	
Framework.”	Policy	Studies	Journal	41	(3):	537–59.	



36	

Lubell,	Mark,	and	Allan	Fulton.	2008.	“Local	Policy	Networks	and	Agricultural	Watershed	
Management.”	Journal	of	Public	Administration	Research	and	Theory	18	(4):	673–96.	

Lubell,	Mark,	John	T.	Scholz,	Ramiro	Berardo,	and	Garry	Robins.	2012.	“Testing	Policy	
Theory	with	Statistical	Models	of	Networks.”	Policy	Studies	Journal	40	(3):	351–74.	

Lusher,	Dean,	Johan	Koskinen,	and	Garry	Robins.	2013.	Exponential	Random	Graph	Models	
for	Social	Networks:	Theory,	Methods,	and	Applications.	New	York,	NY:	Cambridge	
University	Press.	

Marsden,	P.	1990.	“Network	Data	And	Measurement.”	Annual	Review	of	Sociology	16	(1):	
435–63.	

McCarty,	Christopher,	Peter	D.	Killworth,	and	James	Rennell.	2007.	“Impact	of	Methods	for	
Reducing	Respondent	Burden	on	Personal	Network	Structural	Measures.”	Social	
Networks	29	(2):	300–315.	

McNutt,	Kathleen,	and	Adam	Wellstead.	2010.	“Virtual	Policy	Networks	in	Forestry	and	
Climate	Change	in	the	U.S.	and	Canada:	Government	Nodality,	Internationalization	and	
Actor	Complexity.”	Policy	&	Internet	2	(2).	Blackwell	Publishing	Ltd:	33–59.	

Merry,	Melissa	K.	2015.	“Constructing	Policy	Narratives	in	140	Characters	or	Less:	The	Case	
of	Gun	Policy	Organizations.”	Policy	Studies	Journal:	The	Journal	of	the	Policy	Studies	
Organization,	December.	Wiley	Online	Library.	doi:10.1111/psj.12142.	

Morris,	Martina,	Mark	S.	Handcock,	and	David	R.	Hunter.	2008.	“Specification	of	
Exponential-Family	Random	Graph	Models:	Terms	and	Computational	Aspects.”	
Journal	of	Statistical	Software	24	(4):	1548–7660.	

Olesen,	Thomas.	2004.	“The	Transnational	Zapatista	Solidarity	Network:	An	Infrastructure	
Analysis.”	Global	Networks-A	Journal	Of	Transnational	Affairs	4	(1).	Blackwell	
Publishing	Ltd.:	89–107.	

Ostrom,	Vincent,	Charles	M.	Tiebout,	and	Robert	Warren.	1961.	“The	Organization	of	
Government	in	Metropolitan	Areas:	A	Theoretical	Inquiry.”	The	American	Political	
Science	Review	55	(4):	831–42.	

O’Toole,	L.	J.	1997.	“Treating	Networks	Seriously:	Practical	and	Research-Based	Agendas	in	
Public	Administration.”	Public	Administration	Review,	45–52.	

Park,	H.	H.,	R.	K.	Rethemeyer,	and	D.	M.	Hatmaker.	2009.	“THE	POLITICS	OF	CONNECTIONS:	
ASSESSING	THE	DETERMINANTS	OF	SOCIAL	STRUCTURE	IN	POLICY	NETWORKS.”	
Academy	of	Management	Proceedings	2009	(1):	1–6.	

Pilny,	Andrew,	and	Michelle	Shumate.	2012.	“HYPERLINKS	AS	EXTENSIONS	OF	OFFLINE	
INSTRUMENTAL	COLLECTIVE	ACTION.”	Information,	Communication	and	Society	15	
(2):	260–86.	

Provan,	Keith	G.,	and	H.	Brint	Milward.	1995.	“A	Preliminary	Theory	of	Interorganizational	
Network	Effectiveness:	A	Comparative	Study	of	Four	Community	Mental	Health	
Systems.”	Administrative	Science	Quarterly	40	(1):	1–33.	

Rayner,	Jeremy,	Kathleen	McNutt,	and	Adam	Wellstead.	2013.	“Dispersed	Capacity	and	
Weak	Coordination:	The	Challenge	of	Climate	Change	Adaptation	in	Canada’s	Forest	
Policy	Sector.”	The	Review	of	Policy	Research	30	(1):	66–90.	

Rogers,	Richard.	2008.	“The	Politics	of	Web	Space.”	Unpublished	Ms.	Citeseer.	
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.2698&rep=rep1&typ
e=pdf.	

Sandström,	Annica,	and	Lars	Carlsson.	2008.	“The	Performance	of	Policy	Networks:	The	
Relation	between	Network	Structure	and	Network	Performance.”	Policy	Studies	



37	

Journal	36	(4).	Blackwell	Publishing	Inc:	497–524.	
Schneider,	M.,	J.	Scholz,	Mark	Lubell,	D.	Mindruta,	and	M.	Edwardsen.	2003.	“Building	

Consensual	Institutions:	Networks	and	the	National	Estuary	Program.”	American	
Journal	of	Political	Science	47	(1):	143–58.	

Scott,	Tyler	A.	2016.	“Analyzing	Policy	Networks	Using	Valued	Exponential	Random	Graph	
Models:	Do	Government-Sponsored	Collaborative	Groups	Enhance	Organizational	
Networks?”	Policy	Studies	Journal	44	(2):	215–44.	

Scott,	Tyler	A.,	and	Craig	Thomas.	2015.	“Do	Collaborative	Groups	Enhance	
Interorganizational	Networks?”	Public	Performance	&	Management	Review	38	(4):	
654–83.	

Segerberg,	Alexandra,	and	W.	Lance	Bennett.	2011.	“Social	Media	and	the	Organization	of	
Collective	Action:	Using	Twitter	to	Explore	the	Ecologies	of	Two	Climate	Change	
Protests.”	The	Communication	Review	14	(3).	Taylor	&	Francis:	197–215.	

Shelton,	Taylor,	Ate	Poorthuis,	and	Matthew	Zook.	2015.	“Social	Media	and	the	City:	
Rethinking	Urban	Socio-Spatial	Inequality	Using	User-Generated	Geographic	
Information.”	Landscape	and	Urban	Planning	142	(October).	Elsevier:	198–211.	

Shih,	Tse-Hua,	and	Xitao	Fan.	2008.	“Comparing	Response	Rates	from	Web	and	Mail	
Surveys:	A	Meta-Analysis.”	Field	Methods	20	(3):	249–71.	

Shumate,	Michelle,	and	Justin	Lipp.	2008.	“Connective	Collective	Action	Online:	An	
Examination	of	the	Hyperlink	Network	Structure	of	an	NGO	Issue	Network.”	Journal	of	
Computer-Mediated	Communication:	JCMC	14	(1):	178–201.	

Smaldino,	Paul	E.,	and	Mark	Lubell.	2011.	“An	Institutional	Mechanism	for	Assortment	in	an	
Ecology	of	Games.”	PloS	One	6	(8).	journals.plos.org:	e23019.	

Snijders,	Tom	A.	B.,	Philippa	E.	Pattison,	Garry	L.	Robins,	and	Mark	S.	Handcock.	2006.	“New	
Specifications	for	Exponential	Random	Graph	Models.”	Sociological	Methodology	36	
(1):	99–153.	

Ulibarri,	Nicola,	and	Tyler	A.	Scott.	2016.	“Linking	Network	Structure	to	Collaborative	
Governance.”	Journal	of	Public	Administration	Research	and	Theory,	June.	PMRA.	
doi:10.1093/jopart/muw041.	

Yi,	Hongtao,	and	John	T.	Scholz.	2016.	“Policy	Networks	in	Complex	Governance	
Subsystems:	Observing	and	Comparing	Hyperlink,	Media,	and	Partnership	Networks.”	
Policy	Studies	Journal	44	(3):	248–79.	

Yoon,	Ho	Young,	and	Han	Woo	Park.	2012.	“Strategies	Affecting	Twitter-Based	Networking	
Pattern	of	South	Korean	Politicians:	Social	Network	Analysis	and	Exponential	Random	
Graph	Model.”	Quality	&	Quantity	48	(1):	409–23.	

———.	2014.	“Strategies	Affecting	Twitter-Based	Networking	Pattern	of	South	Korean	
Politicians:	Social	Network	Analysis	and	Exponential	Random	Graph	Model.”	Quality	&	
Quantity	48	(1):	409–23.	



38	

	

Appendix	A:	ERGM	Goodness-of-Fit	

ERGM	fitting	

In	brief,	an	ERGM	assumes	that	the	observed	network	is	one	possible	realization	of	the	

underlying	“true”	network,	wherein	the	set	of	possible	realizations	is	defined	by	a	

multivariate	probability	distribution	(Desmarais	and	Cranmer	2012;	Cranmer	and	

Desmarais	2011).	After	simulating	a	distribution	of	possible	networks	(weighted	in	

accordance	with	similarity	to	the	observed	network),	an	ERGM	is	able	to	compare	the	

observed	network	to	this	distribution	and	assess	whether	particular	network	structures	

are	more	or	less	prevalent	than	would	be	expected	at	random.	The	MCMC	MLE	technique	is	

needed	because	the	number	of	potential	configurations	for	a	large	network	is	

computationally	intractable.	An	ERGM	generates	a	graph	at	random,	and	“toggles”	one	tie	at	

a	time,	then	compares	the	likelihood	of	the	prior	and	current	graph.	If	the	likelihood	of	the	

new	graph	is	higher,	the	new	graph	is	selected	and	the	procedure	continues.	If	the	

likelihood	of	the	new	graph	is	lower,	the	new	graph	is	only	accepted	at	a	given	rate	(e.g.,	

50%	of	the	time),	and	then	the	process	continues	(see	Koskinen	and	Daraganova	2013).	

Model	parameters	are	estimated	by	solving	for	the	set	of	parameter	values	with	the	

maximum	likelihood	given	the	observed	network	and	distribution	of	hypothetical	networks	

(Geyer	and	Thompson	1992).		

Adequate	MCMC	Mixing	
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Exponential	random	graph	models	(ERGMs)	are	a	tool	for	inferential	network	analysis	

intended	to	facilitate	conclusions	about	key	drivers	and	structural	tendencies	in	an	

observed	network.	Standard	generalized	linear	models	(e.g.,	logit	and	probit	models)	are	

inappropriate	for	estimating	network	ties,	since	these	dyadic	statistical	designs	do	not	

account	for	hyperdyadic	relationships	present	in	networks,	such	as	how	the	value	of	edges	

from	A	to	B	and	from	A	to	C	might	influence	the	value	of	the	edge	between	B	and	C	

(Cranmer	and	Desmarais	2015).	Instead,	ERGMs	assume	that	that	the	observed	network	is	

one	realization	from	the	distribution	of	possible	network	graphs,	and	that	by	comparing	

the	observed	graph	to	the	distribution	of	potential	graphs	(weighted	in	accordance	to	

structural	similarity	to	the	observed	network),	we	can	make	inferences	regarding	key	

network	drivers	and	structural	tendencies	in	the	network	(based	upon	the	relative	

prevalence	of	particular	structures	as	compared	to	the	simulated	distribution)	(Lusher	et	

al.	2013).	For	any	network	of	non-trivial	size,	the	sheer	number	of	possible	graph	

configures	is	prohibitively	large;	thus,	ERGMs	use	a	Markov	chain	Monte	Carlo	(MCMC)	

maximum	likelihood	estimation	strategy	that	samples	from	the	distribution	of	hypothetical	

networks,	and	then	solves	for	the	set	of	parameter	values	that	make	the	observed	network	

most	likely	(Morris	et	al.	2008).		

	

A	poor	fitting	ERGM	can	become	degenerate,	a	condition	wherein	the	sampling	chain	

cascades	to	either	a	completely	full	(all	ties	realized)	or	complete	empty	(no	ties	realized)	

network	(Snijders	et	al.	2006).	The	MCMC	traceplots	presented	in	figure	A1	demonstrate	

that	the	models	presented	in	this	paper	do	not	become	degenerate,	and	rather	that	the	

MCMC	process	sufficiently	mixes	throughout	the	relevant	parameter	space.	Note	that	we	
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present	traceplots	only	for	the	three	primary	models	presented	in	figure	1;	Diagnostics	for	

figure	2	models	(multiplex	edges)	were	also	sound.	

FIGURE	A1	ABOUT	HERE	
	

Parameter	Convergence	

	
Along	with	demonstrated	sufficient	MCMC	mixing,	it	is	also	important	to	demonstrate	

model	convergence,	namely	that	the	procedure	identifies	a	unimodal	estimate	distribution	

for	each	parameter	(Goodreau	et	al.	2008).	Figure	A2	presents	density	plots	for	the	each	

model	shown	in	figure	1.	

	
FIGURE	A2	ABOUT	HERE	
	

Approximating	Observed	Network	

	
Further,	in	order	to	provide	a	suitable	basis	for	comparison	on	which	to	draw	inferences,	

an	ERGM	must	be	able	to	generate	a	distribution	of	networks	that	reasonably	approximate	

the	observed	network	(otherwise,	parameter	significance	is	largely	meaningless)	

(Goodreau	et	al.	2008).	Figure	A3	compares	the	distribution	of	simulated	statistics	to	the	

number	of	each	structure	occurring	in	each	empirical	network.	The	fact	the	each	observed	

statistic	is	generally	centered	within	each	distribution	evidences	goodness-of-fit.	

FIGURE	A3	ABOUT	HERE	
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Appendix	B:	Tabular	Model	Results	

TABLE	B1	ABOUT	HERE	
	
TABLE	B2	ABOUT	HERE	
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Table	1:	Descriptive	Network	Statistics	
	 Survey	 Hyperlink	 Twitter		

n	 221	 186	 121	

density	 0.02	 0.03	 0.05	

isolates	 21	 21	 18	

edges	 1045	 1051	 691	

mean	degree*	 4.73	 5.65	 5.71	

*Term	equals	both	mean	in-degree	and	mean	out-degree	of	
network	
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Table	2:	Graph	Correlations	Estimate	With	QAP	

	 survey	 hyperlink	 Twitter	

survey	 1.00	(221)	 	 	

hyperlink	 0.23	(186)	 1.00	(186)	 	

Twitter	 0.17	(121)	 0.23	(115)	 1.00	(121)	
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Table	B1:	Full	ERGM	results	for	survey,	hyperlink	and	Twitter	models	
	 Survey	 Hyperlink	 Twitter	

Structural	Terms	 	 	 	
					edges	 -4.63	(0.09)***	 -4.98	(0.10)***	 -4.58	(0.01)***	
					mutual	 2.02	(0.13)***	 0.90	(0.13)***	 0.68	(0.01)***	
					isolates	 1.51	(0.31)***	 1.57	(0.37)***	 2.14	(0.00)***	
					transitivity	(GWESP)+	 1.30	(0.06)***	 1.67	(0.07)***	 1.51	(0.01)***	
					two-path	 -0.07	(0.01)***	 -0.04	(0.00)***	 -0.06	(0.01)***	
					In-degree	(GWID)++		 -0.80	(0.18)***	 0.28	(0.22)	 0.34	(0.01)***	
Node	Terms	 	 	 	
					assortative	mixing	 0.12	(0.10)	 0.61	(0.07)***	 0.60	(0.01)***	
					local	govt	in-links	 -0.09	(0.06)	 -0.02	(0.05)	 -0.14	(0.03)***	
					state	agency	in-links	 0.65	(0.08)***	 1.19	(0.08)***	 0.50	(0.01)***	
					university/research	in-links	 -0.08	(0.11)	 0.14	(0.10)	 0.03	(0.03)*	
					#	resp	(webpages,	tweets)	 0.11	(0.01)***	 5e-4	(1e-4)***	 8e-5	(2e-5)***	
***p	<	0.001,	**p	<	0.01,	*p	<	0.05	
+	To	improve	goodness	of	fit,	weight	parameter	is	fixed	at	0.625	for	the	survey	model,	0.550	for	the	hyperlink	
model,	and	0.700	for	Twitter	model	
++To	improve	goodness	of	fit,	decay	parameter	is	fixed	at	0.95	for	the	survey	model,	0.80	for	the	hyperlink	
model,	and	1.10	for	the	Twitter	model.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Table	B2.	Full	ERGM	results	for	network	multiplexity	models	
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	 Survey	 Hyperlink	 Twitter	

Network	Multiplex	Terms	 	 	 	
				Survey	Network	Edge	 -	 1.70	(0.11)***	 0.93	(0.00)***	
				Hyperlink	Network	Edge	 1.48	(0.09)***	 -	 1.33	(0.01)***	
				Twitter	Network	Edge	 1.08	(0.14)***	 1.05	(0.08)***	 -	
				Both	Network	Edges	 -1.14	(0.06)***	 -1.22	(0.03)***	 -0.96	(0.00)***	
Structural	Terms					 	 	 	
				edges	 -4.60	(0.09)***	 -5.00	(0.05)***	 -4.73	(0.02)***	
				mutual	 2.07	(0.15)***	 1.03	(0.09)***	 0.64	(0.01)***	
				isolates	 1.60	(0.05)***	 1.87	(0.01)***	 2.25	(0.01)***	
				Transitivity	(GWESP)	 1.25	(0.06)***	 1.68	(0.05)***	 1.43	(0.04)***	
				two-path	 -0.06	(0.00)***	 -0.04	(0.00)***	 -0.05	(0.01)***	
				In-degree	(GWID)	 -0.73	(0.16)***	 0.43	(0.05)***	 0.48	(0.02)***	
Node	Terms	 	 	 	
				assortative	mixing	 -0.09	(0.11)	 0.68	(0.09)***	 0.56	(0.01)***	
				local	govt	in-links	 -0.13	(0.06)	 -0.02	(0.07)	 -0.17	(0.04)***	
				state	agency	in-links	 0.31	(0.11)**	 0.85	(0.10)***	 -0.09	(0.01)***	
				university	/research	in-links	 -0.11	(0.13)	 0.25	(0.10)*	 0.06	(0.01)***	
				#	resp	(webpages,	tweets)	 0.10	(0.01)***	 5e-4	(2e-4)***	 1e-4	(2e-5)***	
Multiplex	Sender	Terms+	 	 	 	
				#	sender	responses	 -	 -0.04	(0.02)***	 -0.02	(0.02)	
				#	sender	webpages	 -6e-4	(4e-4)	 -	 -1e-3	(3e-

4)***	
				#	sender	Tweets	 -5e-5	(4e-5)	 -1e-4	(3e-5)***	 -	
***p	<	0.001,	**p	<	0.01,	*p	<	0.05	
+Inclusion	of	these	terms	slightly	improves	model	fit	according	to	AIC	and	BIC	
but	does	not	substantially	impact	the	results.	They	are	used	to	control	for	the	
total	number	of	responses	(and	webpages/tweets)	of	each	‘sending’	node	in	the	
dyad	associated	with	the	two	non-dependent	networks	in	each	of	the	models.	
The	terms	help	capture	the	potential	for	overall	out-degree	behavior	(including	
structural	zeros)	in	the	dyads	of	the	two	non-dependent	networks.	
	

	
 
 


